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Designing with Op Amps for Low Noise

2/Brian Black, Product Marketing Manager, Signal Conditioning Products,

Glen Brisebois, Senior Applications Engineer, Signal Conditioning Products, Linear Technology
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! | Yhe realities of physics prevent us from attaining the
ideal op amp with perfect precision, zero noise,

infinite open—loop gain, slew rate, and gain—bandwidth
product. But we expect successive generations of
amplifiers to be better than the previous. What then to
make of low 1/f noise op amps?

Back in 1985, George Erdi of Linear Technology
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designed the 1.T1028. For over 30 years, it has remained
the lowest voltage noise op amp available at low
frequency with 0.85nV/y Hz input voltage noise density
at 1kHz and 35nV,_, 0.1Hz to 10Hz input voltage
noise. It wasn’t until this year that a new amplifier, the
LT6018 challenged the 1. T1028’s position with 0.1Hz
to 10Hz input voltage noise of 30nV,_, and a 1Hz 1/
f corner frequency, although it’s wideband frequency is
1.20V/y/Hz. The result is that the LT6018 is the lower
noise choice for lower frequency applications, while
the LT1028 provides better performance for many

wideband applications, as shown in Figure 1.
A Noisy Noise Annoys

But there is more to designing low noise circuits than
choosing the lowest voltage noise density (e,) amplifier
for a given frequency band. As shown in Figure 2,
other noise sources come into play, with incoherent
sources combining as a root sum of squares.

First, consider resistors as noise sources. Resistors
inherently have noise, proportional to the square root
of the resistance value. At a temperature of 300K,
the voltage noise density of any resistor is e, =0.13
VR nV/v/Hz. This noise can also be considered as a
Norton equivalent current noise: i, =e,/R = 0.13/4/R
nA/v'Hz. Resistors therefore have a noise power of
17 zeptoWatts. Good op amps will have lower noise
power than this. For example, the LT6018 noise power
(measured at 1KHz) is about 1 zeptoWatt.

In the op amp circuit of Figure 2, the source
resistance, gain resistor, and feedback resistor (RS, R,
and R, respectively) all contribute to the circuit noise.
When calculating noise, the “per root Hertz” used
in voltage noise density can be confusing. But noise

power is what adds together, not noise voltage. So
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to calculate the integrated voltage noise of a resistor
or op amp, multiply the voltage noise density by the
square root of the number of Hertz in the frequency
band. For example, a 100Q resistor has 1.3uV RMS
noise over a IMHz bandwidth (0.13nV/VQ * v 100Q
*v1,000,000Hz). For a circuit with a first order rather
than brick wall filter, the bandwidth would be
multiplied by 1.57 to capture the noise in the higher
bandwidth skirt. To express the noise as peak—to—peak
rather than RMS, multiply by a factor of 6 (not 2.8, as
you would for a sinusoid). With these considerations,
the noise of this 100Q resistor with a simple 1MHz
low—pass filter is closer to 9.8uV; .

Also, the op amp has input current noise associated
with the current into or out of each input, i, and i,,.
These multiply by the resistances they work into, R, in
parallel with R, in the case of in— and Ry in the case of
i, to create voltage noise through the magic of Ohm’s
law. Looking inside the amplifier (Figure 3), this
current noise is comprised of multiple sources.

Considering the wideband noise, each of the two
input transistors have shot noise associated with
their base, i, and i,,, which are not coherent. The
noise from the current source in the input pair tail,
int also creates coherent noise split between the two
inputs (i,/2B in each). If the resistance seen by the
two inputs is equal, the coherent voltage noise at
each input is also equal and cancels according to
the amplifier’s common mode rejection capability,
leaving primarily the incoherent noise. This is
listed as the balanced current noise in data sheets.
If the resistance seen at the two inputs is greatly
mismatched, then the coherent and incoherent noise
components remain and the voltage noise adds as the
root sum of squares. This is listed in some data sheets

as unbalanced noise current.
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important.

In transimpedance applications, where the input
to the amplifier is a current, a different strategy is
needed. In this case, the Johnson noise of the feedback
resistor increases as a square root factor of its resistance
value, but at the same time the signal gain increase
is linear with the resistance value. Hence the best
SNR is achieved with as large a resistance as the
voltage capability or the current noise of the op amp
allows. For an interesting example, see the back page

application on page 26 of the LTC6090 data sheet.

Noise and Other Headaches

Noise is just one source of error, and should be
considered within the context of other error sources.
Input offset voltage (the voltage mismatch at the
op amp inputs) can be thought of as DC noise. Its
impact can be reduced significantly by doing a one—
time system calibration, but this offset voltage changes
with temperature and time as a result of changes in
mechanical stress. It also changes with input level
(CMRR) and power supply (PSRR). Real-time system
calibration to cancel drift caused by these variables
quickly becomes expensive and impractical. For harsh
environment applications where the temperature
fluctuates considerably, measurement uncertainty due
to offset voltage and drift can dominate over noise.
For example, an op amp with 5uV/C temperature
drift can experience an input-referred shift of 625uV
from —40°C to 85C due to temperature drift alone.
Compared with this, a few hundred nanovolts of
noise is inconsequential. The LT6018 has outstanding
drift performance of 0.5uV/C and a maximum offset
spec of 80uV from —40°C to 85°C. For even better

performance, the recently released LTC2057 auto—zero
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amplifier has a maximum offset voltage of less than
TuV from —40°C to 125°C. Its wideband noise of 11nV/
VHz, and its DC to 10Hz noise is 200nV;._p. While
this is higher noise than the LT6018, the LTC2057
can sometimes be the better choice for low frequency
applications due to its outstanding input offset drift
over temperature, It is also worth noting that due to
its low input bias current, the LT2057 has much lower
current noise than the LT6018. Another benefit of the
LTC2057 low input bias current is that it has very
low clock feedthrough compared with many other
zero—drift amplifiers. Some of these other zero—drift
amplifiers can exhibit large voltage noise spurs when
source impedance is high.

In such high precision circuits, care must also
be taken to minimize thermocouple effects, which
occur anywhere that there is a junction of dissimilar
metals. Even junctions of two copper wires from
different manufacturers can generate thermal EMFs of
200nV/C, over 13 times the worst—case drift of the
LTC2057. Layout techniques to match or minimize the
number of junctions in the amplifier’s input signal path,
keep inputs and matching junctions close together, and
avoiding thermal gradients are important in these low

drift circuits.
Conclusion

Noise is a fundamental physical limitation. To
minimize its effects in processing sensor signals, care
must be taken in choosing a suitable op amp, in
minimizing and matching input resistances, and in the

physical layout of the design. Bl
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